MicroRNA let-7g inhibits angiotensin II-induced endothelial senescence via the LOX-1-independent mechanism

نویسندگان

  • Po-Yuan Hsu
  • Wen-Yi Lin
  • Ruey-Tay Lin
  • Suh-Hang H. Juo
چکیده

Endothelial senescence leads to cell dysfunction, which in turn eventually results in cardiovascular disease. Identifying factors that regulate endothelial senescence may provide insight into the pathogenesis of aging. Insulin-like growth factor (IGF) signaling has a significant role in the physiology of endothelial cells (ECs). Overactivation of IGF signaling has been implicated in promoting the aging process. Lectin‑like oxidized low‑density lipoprotein (oxLDL) receptor‑1 (LOX‑1) is a scavenger receptor that mediates the internalization of oxLDL into cells. Previous studies by our group have indicated that microRNA let‑7g exerts an anti‑aging effect on ECs and also suppresses LOX-1 expression. Since LOX‑1 also induces the aging process, the present study we explored whether let‑7g still exerts an anti‑aging effect on ECs when LOX‑1 is suppressed. Angiotensin II (Ang II) was used to induce senescence in ECs. It was revealed that Ang II significantly increased the expression of aging markers, including β‑galactosidase, LOX‑1, IGF1 and its receptor IGF1R. On the contrary, Ang II decreased the expression of the anti‑aging gene sirtuin 1 (SIRT1). When LOX‑1 was knocked down by small interfering RNA, let‑7g still dose‑dependently decreased the expression of β‑galactosidase (β‑gal), LOX‑1, IGF1 and IGF1R, and SIRT1 was still upregulated. Using senescence‑associated β‑gal staining, it was confirmed that let‑7g exerts a LOX‑1‑independent anti‑aging effect on ECs. In conclusion, the present study demonstrated that let‑7g has an anti‑aging effect regardless of the presence or absence of LOX-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hsa-Let-7g miRNA Targets Caspase-3 and Inhibits the Apoptosis Induced by ox-LDL in Endothelial Cells

It has been well confirmed ox-LDL plays key roles in the development of atherosclerosis via binding to LOX-1 and inducing apoptosis in vascular endothelial cells. Recent studies have shown ox-LDL can suppress microRNA has-let-7g, which in turn inhibits the ox-LDL induced apoptosis. However, details need to be uncovered. To determine the anti-atherosclerosis effect of microRNA has-let-7g, and to...

متن کامل

MicroRNA let-7g alleviates atherosclerosis via the targeting of LOX-1 in vitro and in vivo

Atherosclerosis is a chronic arterial disease and the leading cause of stroke and myocardial infarction. Micro-RNAs (miRNAs or miRs) have been reported to act as essential modulators during the progression of atherosclerosis. Although miR-let-7g has been demonstrated to contribute to maintaining endothelial function and vascular homeostasis, it is not known whether miR-let-7g exerts a therapeut...

متن کامل

Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1.

Lectin-like oxidized LDL receptor-1 (LOX-1) is a surface scavenger receptor for oxidized low-density lipoprotein (oxLDL). Several transcription factors have been reported to regulate LOX-1 expression. MicroRNAs are small noncoding RNAs that control gene expression, but there have been no reports of LOX-1 expression being regulated by microRNAs. Because the microRNA let-7g has been predicted to ...

متن کامل

MicroRNA Let-7g and Atherosclerosis Plaque Stabilization

Vascular atherosclerotic vulnerable plaque rupture is the primary cause of acute myocardial infarctions and strokes. Thus, stabilization of vulnerable plaques is of important clinical endeavor to decrease the fatal risk of atherosclerosis. Inflammatory infiltration, apoptosis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), destruction of extracellular matrix (ECM) or collag...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2018